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Abstract—While the brain develops through interactions with
the external environment, it almost never experiences an exact
physical event twice. Furthermore, the attended objects and
events do not appear exactly the same as before and the
background settings are not the exactly same either. However, the
brain can abstract and generalize to deal with those environmen-
tal variations. This paper discusses a theory on the completeness
of the logic capability of the Developmental Networks (DN) as a
simplified brain-like model from such environmental variations.
Various abstractions and generalizations are emergent properties
of a DN through its incremental lifetime learning experience.
While this process takes place, the network appears to have
an increasing amount of logic capability in the eyes of human
observers. Since it seems impossible to explain all possible
kinds of logic capabilities that a human can acquire through
his lifetime, I propose a general task-nonspecific formulation
about logic capability in a DN. I prove that a DN incrementally
generates and updates an internal, emergent, Finite Automaton
(FA), whose complexity becomes increasingly high under the
teacher’s scaffolding scheme. It seems that such a highly complex
FA can implement any practical logic. This is a theoretical paper
but it discusses and cites supporting experimental results.

I. INTRODUCTION

Logic capabilities require an emergent solution for two
conflicting criteria — specificity and transfer.

After a child has learned that the object that it sees in his left
hand is called “apple”, the child should call the same object
in his left hand “apple” when he is asked again. However, he
should not call a pear in his left hand “apple”. This is called
specificity. Specificity means that the brain must maintain a
discrimination power for specific examples it has learned under
the same context setting. In our example, the child distinguish
“apple” from a “pear” in the same context setting (in his left
hand).

When a new apple is now placed in his right hand, the
child should still call it “apple”. This is called transfer a skill
across different instances of the same class. In general, transfer
means that skills acquired from one environmental setting are
transferred to applicable but different environmental settings
without a need for explicit learning for those new settings. In
the above example, the change in the environmental setting is
the location (from left to right hand). Transfer is a particular
type of generalization. The environmental setting can change
in many aspects, such as location, viewing angle, lighting,
background, temporal context, and task.

Let us look at the example of Where-What Networks [6],
which model the brain’s dorsal pathways (where or how in-
formation) and the ventral pathways (what information). After
training, the Type Motor area (TM) in the WWN is location
invariant, meaning that the same object can be recognized
correctly at any locations. However, this is not transfer yet,
since the same object appearance has been learned at all
locations. Suppose that a new apple is learned at a particular
location. If the WWN can report “apple” for the new apple at
different locations without a need for learning the new apple
at all other locations, then the WWN does transfer for the new
apple across these successfully tested locations. This is what
WNNs have accomplished, in all their disjoint tests [6].

We propose that skill transfer is a key for the brain to have a
general logic capability. Skill transfer is a notation extensively
studied in psychology [2] but in machine learning this notion
is still novel and challenging. Daniel Oblinger, the Director
of the DAPPA Transfer Learning Program, wrote 2011 [9]:
“Creating a formal theory of transfer remains a critical, yet
difficult, direction for future work.” As a part of network logic
capabilities, I attempt a theory of transfer here and explain its
power in dealing with logic.

Let us first discuss how handcrafted Symbolic Networks
(SN) do logic, but we want emergent networks to do logic.

II. SYMBOLIC NETWORKS

Each element in the environment is attended sequentially by
the agent to reach a new state, let us start with the framework
of (deterministic) Finite Automaton (FA) as a special case of
Symbolic Networks (SNs).

A. Finite automata

An FA example is shown in Fig. 1(a). At each time instance,
the FA is at a state. At the beginning, our example is at state
z1. Each time, it receives a label as input (e.g., “young”).
Depending on its current state and the next input, it transits
to another state. For example, if it is at z1 and receives label
“young”, it transits to “z2”, meaning “I got ‘young’.” All other
inputs from z1 leads back to z1 meaning “start over”. The
states have the following meanings: z1: start; z2: “young”; z3:
“kitten” or equivalent; z4: “kitten looks” or equivalent. An FA
can abstract. For example, our FA example treats “young cat”
and “kitten” the same in its state output.
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Fig. 1. Conceptual correspondence between an Finite Automaton
(FA) with the corresponding DN. (a) An FA, handcrafted and static.
(b) A corresponding DN that simulates the FA. It was taught to
produce the same input-out relations as the FA in (a). A state symbol
(e.g., z2) in (a) corresponds to a Z image (e.g., (z1, z2, z3, z4) =
(0, 1, 0, 0)) in (b). Each state symbol in (a) is abstract and so is each
Z image in (b).

The FA framework has been often defined as a language
acceptor in the traditional automata theory [3]. To model an
agent, it is desirable to extend the definition of the FA as
a language acceptor to an agent FA. An agent FA (AFA)
M for a finite symbolic world is the same as a language
acceptor FA, except that it outputs its current state, instead
of an action (accept or not accept) associated with the state.
In the following, an FA means an AFA by default.

The input space of an FA is denoted as Σ = {σ1, σ2, ..., σl},
where each σi representing an input symbol, whose meaning
is only expressed in the design document (e.g., that of CYC
[5]), not something that the FA is aware of. The set of states
can be denoted as Q = {q1, q2, ..., qn}.

It is important to note that the meanings of input symbols
σ’s and the meanings of states q’s are in the design document
of the FA, but the FA is not “aware” of such meanings.
Fig. 1(a) gives a simple example of FA.

B. Completeness of FA

Let Σ∗ denote the set of all possible strings of any finite
n ≥ 0 number of symbols from Σ. All possible input
sequences that lead to the same state q are equivalent as
far as the FA is concerned. It has been proved that an FA
with n states partitions all the strings in Σ∗ into n sets. Each
set is called equivalence class, consisting of strings that are
equivalent. Since these strings are equivalent, any string x
in the same set can be used to denote the equivalent class,
denoted as [x]. Let Λ denote an empty string. Consider the
example in Fig. 1(a). The FA partitions all possible strings into
4 equivalent classes. All the strings in the equivalent class [Λ]

end in z1. All strings in the equivalent class [“kitten” “looks”]
end in z4, etc.

The completeness of agent FA can be described as follows.
When the number of states is sufficiently large, a properly
designed FA can sufficiently characterize the cognition and
behaviors of an agent living in the symbolic world of input
set Σ. But Weng stated FA is insufficient for perception [14].

C. Other types of automata

There are four well-known types of automata: FA, Push-
down Automata, Linear Bounded Automata, and Turing ma-
chines. Automata have been used to model the syntax of a
language, but syntax does not give much information about
semantics. As argued by linguisticists [11], [4], semantics is
primary in language acquisition, understanding and produc-
tion, while syntax is secondary.

The DN theory below enables the semantics to emerge
implicitly in its connection weights in the network. In par-
ticular, it treats syntax as part of the emergent semantics, at
all possible “levels”. It does not separately treat syntax as in
the Chomskys hierarchy of automata. Therefore, FA seems
sufficient for a state-based symbolic agent in terms of logic.

III. DEVELOPMENTAL NETWORKS

The new class of DN, different from all traditional networks,
is a model for the brain [14]. Its has demonstrated perception,
attention, cognition, and language acquisition [6], [8], [14].

A. DN architecture

A basic DN has three areas, the sensory area X , the internal
(brain) area Y and the motor area Z. An example of DN
is shown in Fig. 1(b). The internal neurons in Y have two-
way connection with both X and Z. In principle, the X
area can model any sensory modality (e.g., vision, audition,
and touch). The motor area Z serves both input and output.
When the environment supervises Z, Z is the input to the
network. Otherwise, Z gives an output vector to drive effectors
(muscles) which act on the real world. The order of areas from
low to high is: X,Y, Z. As shown in Fig. 1, X and Y provide
bottom-up input b to Y and Z, respectively; while Z and Y
give top-down input t to Y and X , respectively.

B. DN algorithm

Algorithm 1 (DN): Input areas: X and Z. Output areas: X
and Z. The dimension and representation of X and Y areas
are hand designed based on the sensors and effectors of the
species (or from evolution in biology). Y is the skull-closed
(inside the brain), not directly accessible by the outside.

1) At time t = 0, for each area A in {X,Y, Z}, initialize
its adaptive part N = (V,G) and the response vector
r, where V contains all the synaptic weight vectors and
G stores all the neuronal ages. For example, use the
generative DN method discussed below.

2) At time t = 1, 2, ..., for each A in {X,Y, Z} repeat:
a) Every area A performs neurogenesis if it is needed,

using its bottom-up and top-down inputs b and t,
respectively.
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b) Every area A computes its area function f , de-
scribed below,

(r′, N ′) = f(b, t, N)

where r′ is its response vector.
c) For every area A in {X,Y, Z}, A replaces: N ←

N ′ and r← r′.
This is a Generative DN in the sense that new neurons are
generated autonomously. In the following by DN, we mean a
GDN by default.

C. Unified DN area function

It is desirable that each brain area uses the same area
function f , which can develop area specific representation and
generate area specific responses. Each area A has a weight
vector v = (vb,vt). Its pre-response value is:

r(vb,b,vt, t) = v̇ · ṗ (1)

where v̇ is the unit vector of the normalized synaptic vector
v = (v̇b, v̇t), and ṗ is the unit vector of the normalized input
vector p = (ḃ, ṫ). The inner product measures the degree
of match between these two directions v̇ and ṗ, because
r(vb,b,vt, t) = cos(θ) where θ is the angle between two unit
vectors v̇ and ṗ. This enables a match between two vectors
of different magnitudes (e.g., a weight vector from an object
viewed indoor to match the same object when it is viewed
outdoor). The pre-response value ranges in [−1, 1].

To simulate lateral inhibitions (winner-take-all) within each
area A, top k winners fire. Considering k = 1, the winner
neuron j is identified by:

j = arg max
1≤i≤c

r(vbi,b,vti, t). (2)

The area dynamically scale top-k winners so that the top-k
respond with response values r′ in (0, 1]. For k = 1, only
the single winner fires with response value r′j = 1 (a pike)
and all other neurons in A do not fire. The response value
r′j approximates the probability for ṗ to fall into the Voronoi
region of its v̇j where the “nearness” is r(vb,b,vt, t).

D. DN learning: Hebbian

All the connections in a DN are learned incrementally based
on Hebbian learning — cofiring of the pre-synaptic activity ṗ
and the post-synaptic activity y of the firing neuron. When
a neuron j fires, its firing age is incremented nj ← nj +
1 and then its synapse vector is updated by a Hebbian-like
mechanism:

vj ← w1(nj)vj + w2(nj)r′jṗ (3)

where w2(nj) is the learning rate depending on the firing age
(counts) nj of the neuron j and w1(nj) is the retention rate
with w1(nj) + w2(nj) ≡ 1. The simplest version of w2(nj)
is w2(nj) = 1/nj which corresponds to:

v(i)
j =

i− 1
i

v(i−1)
j +

1
i
1ṗ(ti), i = 1, 2, ..., nj , (4)

where ti is the firing time of the post-synaptic neuron j.

IV. DN CAN PERFECTLY SIMULATE ANY GIVEN FA
It is a long, extensively debated question (e.g., see Minsky

1991 [7]) whether a neural network can abstract as well as a
symbolic network. Weng 2011 [16] provided three theorems,
which provide properties about how well a DN can abstract,
using FA as a basis. The proofs for the three theorems are
available as a report [15]. Since this paper is meant to discuss
the general logic capability of DN, let us have an informal
explanation of the three theorems. For more detail about their
importance, the reader is referred to [17].

Theorem 1: The developmental program (DP) of DN can
incrementally grow a Generative DN (GDN) to simulate any
given FA on the fly, so that the performance of the DP is
immediate and error-free, provided that the Z area of the DN
is supervised when the DN observes each new state transition
from the FA. The learning for each state transition completes
within two network updates. There is no need for a second
supervision for the same state transition to reach error-free
future performance. The number of Y neurons in the DN is
the number of state transitions in the FA. However, the DN
generalizes with 0% action error for infinitely many equivalent
input sequences that it has not observed from the FA but are
intended by the human FA designer.

As a sketch of the proof, Fig. 2 illustrates how the DN
simulates each new state transition of FA by creating a new
Y neuron that immediately initializes with the image code of
the state q(t − 1) and the image code of the input σ(t − 1)
through the first network update (see the Y area at time t−0.5).
During the next network update, the Z area is supervised as
the image code of the desired state q(t) and the links from
the uniquely firing new Y neuron to the firing Z neurons are
created through a Hebbian mechanism. Since the match of the
new Y neuron is exact and only one Y neuron fires at any
time, the Z output is always error-free if all image codes for
Z are known to be binary (spikes).

The other two theorems in Weng 2011 [16] establish that
when the learned DN takes infinitely many inputs, DN is
optimal in the sense of maximum likelihood, whether the DN
is frozen (the 2nd theorem) or allowed to continue to adapt
(the 3rd theorem).

In general, an FA can be designed for any symbolic func-
tion, such as functions of the propositional logic, first-order
logic, and higher order logic. For example., consider a two
variable logic function f(A,B) = A∧B, where A and B are
logic variables and ∧ denotes logic AND. Table I is the state
transition table implementing this function, starting with state
q0. In the table, at the row q and column σ, the entry is the
state q′ in q σ−→ q′. Thus, FA can model any logic functions.

The next problem to solve is, typically, the FA is not known
or given a priori. Instead, the DN must automatically construct
an FA on the fly (i.e., development), through interactions with
the environment, which typically includes a human teacher.

We then turn the question to a teacher who is part of the
environment which the GDN interacts with. What are the
conditions for the teacher to successfully teach a GDN for
a task?
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(a) An NS samples the vector space Z using symbolic set Q and X using Σ, to compute symbolic mapping Q(t− 1)× Σ(t− 1) 7→ Q(t). This example
has four states Q = {q1, q2, q3, q4}, with two input symbols Σ = {σ1, σ2}. Two conditions (q, σ) (e.g., q = q2 and σ = σ2) identify the active outgoing
arrow (e.g., red). q3 = δ(q2, σ2) is the target state pointed to by the (red) arrow. (b) The grounded DN generates the internal brain area Y as a bridge, its
two-way connections with its two banks X and Z, the inner-product distance, and adaptation, to realize the external brain mapping. It performs at least two
network updates during each unit time. To show how the DN learns a SN, the colors between (a) and (b) match. The sign ≡ means “image code for”. In
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sampling in general. The black arrows in (b) are for predicting X . Each arrow link in (b) represents many connections. When it is shown by a non-black
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TABLE I
FA THAT IMPLEMENTS LOGIC AND

q \ σ T F ∧
q0 qT qF -
qT - - qT∧
qF - - qF∧
qT∧ qT qF -
qF∧ qF qF -

V. IN THE HUMAN EYES

In order to define a task condition, the teacher specifies
a condition set C applied to an agent-centerd external envi-
ronment E(t) at time t. If C(E(t)) = True, meaning that
the condition set C checks the spatiotemporal context of
environment E(t) up to time t and his conclusion is true. We
say “spatiotemporal context” instead of directly E(t) at time t
because certain conditions involve temporal context (e.g., the
teacher says to the agent: “start!” which lasts a second).

Suppose that a teacher (or caregiver) needs to teach a DN to
perform a task whose goal is to change the external environ-
ment E(t) from E(t0) to E(tn) through n time steps so that
an initial condition set C0 on E(t0) and an target condition
set Cn on E(tn) are both satisfied: C0(E(t0)) = True and
Cn(E(tn)) = True, in the eyes of the teacher.

For example, for a transportation problem, C0 checks that
the agent and the cargo are at the starting location L0. Cn

checks that the agent and the cargo are at the target location
Ln. If the agent moves from L0 to Ln without taking the
cargo, the condition set Cn is not true. If somebody else
takes the cargo from L0 to Ln but not the agent, C0 can
be false or Cn can be false. Such condition verifications are
done typically by humans, although it is desirable for the agent
also to check such conditions so that it can know whether it
is doing correctly.

We can also consider a series of tasks. Each task i is a
condition pair (Ci−1, Ci), where Ci−1 is the task starting
condition set and Ci is the task ending condition set. It is
important to note that Ci−1 should include also task specifi-
cation, so that the agent can react to perform the task i. The
task specification can be implicit (e.g., the teacher extends her
arm forward means “shake hands with me”), and explicit (e.g.,
simply state “shake hands with me”).

Suppose that an agent DN successfully performs a task
(C0, Cn) from environment E(t0) and reaches an target en-
vironment E(tn) so that C0(E(t0)) = Cn(E(tn)) = True.
Then, the DN can be modeled by an emergent FA which learns
and performs state transitions through discrete times but in a
task nonspecific way:

Algorithm 2 (DN grounded learning and execution): For
i = 1, 2, ..., n do

1) Take sensory input X(ti−1) from environment E(ti−1).
2) In the first DN update, Y does motor attention from

Z(ti−1) to get the attended state qi−1, and sensory
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attention from X(ti−1) to get the attended input σi−1:

(qi−1, σi−1) −→ Y

3) In the 2nd DN update, Z and X perform prediction

Y −→ (σi, qi).

where qi predicts Z(ti) which interacts with (can be
overridden by) the environment to give E(ti), and σi
predicts X(ti) which interacts with (can be overridden
by) the environment in step 1).

In the above algorithm, the teacher must teach DN to
generate motor Z(ti) in each step i. This is too tedious if
the teach immediately teach a baby to read a novel.

In practice, the teacher designs a teaching schedule, from
simple tasks to complex ones. The simple tasks serve as
scaffolding for performing more complex tasks, as described
originally by Vygotsky [11] now well known in developmental
psychology [18]. For example, early tasks are eating, crawling
and playing. Later tasks are reading, practice and planning.

A teacher designs a teaching schedule first, based on what
an age group can typically do. Suppose S = (C0, C1, ...Cn)
is a teaching schedule for an age group where (Ci−1, Ci) is
the task i, i = 1, 2, ..., n. The skills acquired by the age group
enable the agent to learn each task i in a semi supervised way,
so that the teacher does not need to supervise the agent for
every time frame during the teaching.

Variations of environments are important. So, we need the
mechanism of transfer: State-equivalence in the agent percep-
tion enables it to map two different environment contexts E
and E′ to the same state: q, so that the FA in the brain applies
the skill q σ−→ q′ learned in E to new context E′ without
learning E′ explicitly. If the agent successfully does the task
through a variety of environments (starting, intermediate, and
target environments), the teacher gives a “pass”.

The following theorem gives a sufficient condition for a DN
to successfully carry out a task in the eyes of a teacher.

Theorem 2 (Task success): Suppose that DN has acquired
a concept set C, which consists of symbolic symbols of all
the actions that DN can generate. If a teacher trains the
DN additionally by expanding teaching schedule S so that

Internal Y: 

Motor Z:

Co
nc

ep
t s

et 
A

Pi
xe

l s
et 
α

Pi
xe

l s
et 
β

Pi
xe

l s
et 
γ

Pi
xe

l s
et 
δ

Pi
xe

l s
et 
ε

Pi
xe

l s
et 
ζ

Co
nc

ep
t s

et 
B

Co
nc

ep
t s

et 
C

Co
nc

ep
t s

et 
D

Co
nc

ep
t s

et 
E

Co
nc

ep
t s

et 
F

Sensory X: 

1 2 3 4

Fig. 4. How a DN simulates an autonomously generated NFA.

at each step i, the attended DN state qi contains concepts
qi = {ci,1, ci,2, ..., ci,ni

}, where ci,j ∈ C, 1 ≤ j ≤ ni, so that
1) C0(E(t0)) = True,
2) DN behaves as an emergent FA for the given task, to

perform state transition qi−1
σi−→ qi, i = 1, 2, ..., n.

3) Cn(E(tn)) = True.
Then the DN is an emergent FA that has successfully executed
the task in the eyes of the teacher.

Proof: The proof follows from the proof of Theorem
1 in [15]. It has been proved that a GDN can simulate any
given FA sequentially, perfectly, and error free, based on the
observed state transition qi−1

σi−→ qi. The differences here
are: (1) We denote the DN as a non-symbolic (emergent) FA.
(2) The sensory attention from X is incorporated to give σi.
(3) The motor attention from Z is incorporated to give qi.
(4) Represent the symbolic state qi by a subset of concept
set C, such that each state qi emerges from Z through real
time instead of handcrafted upfront by a programmer. (5) The
actions of DN are vectors checked by the teacher using her
intuition about task conditions C0 and Cn, so the term “in the
eyes of the teacher”. For example, the teacher thinks that a
baby’s action “eat” does not have to be perfect.

It is important to note that the DN is not a symbolic FA,
since handcrafting such an FA for a non-trivial task is typically
intractable for a large task (e.g., the symbolic CYC [5]). If
C = {eat, craw, play}, then q1 = {eat, craw} ⊂ C. However,
the number of all the actually emerged states from DN is very
small compared with all the possible subsets of C, 2C .

The importance of this theorem includes: (1) A subset q ∈
C, as a new concept (can be indicated by a new word), from
the set of learned concepts C could emerge from the DN —
an important strength of scaffolding. (2) This theorem is task
non-specific, applicable to any task at lest in principle. Because
of the task non-specificity, it has established as a special case
that DN is logically complete, not only in terms of FA, but
also in the human eyes.

VI. BI-DIRECTIONAL EXCITATIONS

To examine more closely how DN enables states to emerge,
let us consider a simple case, without loss of generality, as
illustrated in Fig. 4. Greek letters α, β, γ, etc. denote the firing
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neurons in X , while the letters, A,B,C, etc. denote the firing
neurons in Z. During the first time block T1, t ∈ T1, the set
of firing pixels are X(t) = α∪β∪γ the union of three sets of
firing pixels α, β and γ, and the set of fitting motor neurons
are Z(t) = A ∪B ∪C the union of three sets of firing motor
neurons A, B, and C, and the Y neuron 1 fires. This situation
does not significantly change during the time block T1. That is
why each of the neuronal sets A through C, α through γ, and
Y neuron 1 has an arrow loop that points back to the same set
as time sequence. The Y neuron 1 is the current best-matched
neuron among all the neurons in the Y area for both bottom-
up and top-down inputs. Because the Y neurons co-fires with
the corresponding X and Z neurons in time block T1, their
connections with the Y neuron 1 are all bi-directional.

Consider the next time block T2, t ∈ T2, the firing neurons
in X and Z are β∪γ∪δ and B∪C∪D, respectively. Suppose
that the Y neuron 2 becomes the best-matched neuron. Similar
to time block T1, the connections with the Y neuron 2 are also
bi-directional. This process continues on. In general, because
of the limited neuronal resource in Y , a slight change in either
X and Z does not necessarily change the firing Y neuron, only
a considerable change does.

The two-way excitatory connections result in the prediction
from partial stimuli. This is a major difference from a symbolic
FA which is rigid. For example, in Fig. 4, suppose that only
the neurons in the set α is firing. The learned bi-directionally
connections in Fig. 4 quickly cause X to have α∪β∪γ firing,
and Z to have A∪B ∪C firing, because the Y neuron 1 fires
as the top-1 match.

In the following, we use the theorem 2 and the general
connection pattern in Fig. 4 to discuss a series of tasks.

VII. REALIZING PSYCHOLOGICAL LEARNING MODELS

An FA is exact. DN can go beyond an FA, to learn and act
like a brain. So, we discuss psychological learning models.

There are many types of associative learning formulated
by psychology, including classical conditioning, instrumental
conditioning and the very large class of more sophisticated
learning, called cognitive learning [2] which includes transfer,
shown in Fig. 5, as the basic mechanism to scaffold skill
complexity.

We use the original word (e.g., Tone, Food) for the sensory
stimulus sensed by X and the quoted word (e.g., “Tone”,
“Food”) to represent the concepts in Z. For simplicity, we
assume that each input symbol is exclusive, in the sense
that the agent can take one input symbol at a time, not
conjunctively.

A. Classical conditioning

Let us first consider a task, classical conditioning. For this
task, the concepts learned by the Z neurons are “Tone”,
“Food” and “Salivation”, 3 concepts. The number of all
possible actions from 3 concepts is 23 = 8, but not all will
appear. We use Λ to represent that none of the concept is
present. According to the Theorem 2, the state q ∈ 2C emerges
from Z.

Sound Food (appetitive)

......

......
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conditioning

Bar A press

Sensation

Action

Sensation

Action

(b)
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conditioning
(appetitive)
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(c)
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......
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Do 1 Do 2 Do 3Task T
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Do 1 Do 2

Sensation

Action
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......
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Task
transfer

Fig. 5. A few learning models in psychology: (a) classical conditioning,
(b-c) instrumental conditioning, and (d) task transfer. Each circle in the figure
indicates a time instance. From left to right is the passing events cross time.
Solid arrows denote short-time-separation associations. Dashed arrows denote
prediction through learned experience.
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Fig. 6. A DN from an environment as classical conditioning.

Suppose that our agent is a dog. The owner of the dog
always make a tone before feeding the dog with its favorite
food. The DN is a model for this simple dog brain. After
experiencing this environmental events repeatedly, the devel-
oped DN is illustrated in Fig. 6 which corresponds to the
FA in Table II. In each table entry, e.g., {1}, {T, F}, the
first item (e.g., {1}) is the set of Y neurons that fire under
the corresponding row-column condition; and the second item
(e.g., {T, F}) is the next Z state. “-” means never happened.
The state of the DN is determined by all the firing neurons in
Z, not by a single Z neuron.

Modeled as a task, classical conditioning, repeated se-
quences of events are learned: a tone is conditionally followed
by food which is unconditionally followed by salivation. “Con-
ditionally” means if the environment satisfies the condition.
“Unconditionally” means that the agent will develop (early
in life) such a behavior under typical, normal environmental
conditions. (This does not mean that the behavior is innate
without a need for environment.) After the dog is trained in
such an environment, the dog will salivate after it hear the
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TABLE II
DN FOR CLASSICAL CONDITIONING REPRESENTED AS AN FA: T: “TONE”; F:“FOOD”; S: “SALIVATE”; OTHER: OTHER Y NEURONS.

Motor Z \ Sensory X Λ Tone Food
State A other, A {1}, {T} -
State B: {T} {1}, {T} {1}, {T, F} {2}, {T, F, S}
State C: {T, F} {1}, {T, F} {2}, {T, F, S} {2}, {T, F, S}
State D: {T, F, S} {2}, {T, F, S} {2}, {T, F, S} {2}, {T, F, S}

Tone, even without the presentation of Food. How does the
DN accomplish its learning for classical conditioning?

As the tone will last for multiple time frames, the firing
Y neuron 1 has two-way excitatory connections with the Z
neuron “Tone”. When the stimulus Food is presented next,
the Z neuron for generating “Food” fires through motor-
supervised learning. Just like the first stimulus Tone, Y neuron
2 fires.

In order to enable DN to make predictions, we require k > 1
in top-k competition of the Y area. Furthermore, there are
sufficient number of Y neurons so that a single Y neuron in
Fig. 6 denotes more than one neuron.

B. Training in classical conditioning

When the Food stimulus follows the Tone stimulus, the
Z neuron “Tone” does not stop firing immediately, at last
lasting for a few time frames. This is because of the two-way
connections between the Z neuron “Tone” and the Y neuron
1: Although the X neuron Tone stopped firing, the Y neuron
1 still gives excitation from the Z neuron “Tone” and will be
a top-k winner for a short while.

When the Y neuron 2 fires as the top winner, the Z neuron
“Food” is supervised to fire. This sustained firing enables the
Y neuron 2 to detect the co-occurring of “Food” bottom-
up input, the “Tone” top-down input, and the “Food” top-
down input. While Z neuron “Food” fires, the “Salivate” also
fires (via motor supervised learning to simulate unconditioned
response). Food is the stimulus for the unconditional response
“Salivate”. Eventually, the Y neuron 2 represents the co-firing
of Tone, Food, “Tone”, “Food”, and “Salivate”.

When the memory of “Tone” abates, the Y neuron 2 does
not match well. The Y neuron 3 takes over as the firing Y
neuron, representing the co-firing of Food stimulus, “Food”
action and “Salivate” action.

In general, mutual excitatory connections enable the cor-
responding Y and Z neurons to prolong their firing. Such a
sustained firing enables a series of Y and Z neurons to form
a chain, connected by bidirectional excitatory synaptic links.

C. Testing in classical conditioning

Next, suppose that the Tone stimulus is presented without
the follow-up Food stimulus. The network responds through
the established connections in Fig. 6: While the Tone stimulus
is present, the Y neuron 1 fires which causes the Z neuron
“Tone” to fire. The firing of Y neuron 1 causes the Z neuron
“Food” also fires. Thus, although the Food stimulus is not
present, the DN predicts the Food stimulus to follow. In other

words, the DN “thinks” about “Food”. Furthermore, the firing
Z neuron “Food” predicts the firing of Z neuron “Salivate”
via the Y neuron 2.

In general, an absent sensory stimulus (e.g., Food) is bridged
by the corresponding Z neuron (e.g., “Food”) through Y −Z
excitatory loops. Similarly, the X-Y loops allow Y neurons
to predict sensory X , as a predicted mental image. Such
predictions for Z and X through Y realize all the dashed links
in Fig. 5. This is a form of “brain” internal prediction, which
is different from the real sensory experience during training
because of the absence of the real stimuli sensed by X .

D. Instrumental conditioning

Instrumental conditioning is another psychological learning
model, illustrated in Fig. 5, that involves reinforcers.

The Q-learning algorithm [13] is a well-known machine-
learning algorithm that uses a symbolic network. The Q-
learning algorithm deals with the time-delayed problem using
a time-discount mechanism. A Q-value Q(s, a) is estimated
for each state-action pair (s, a), where s and a are symbolic
state and symbolic action, respectively.

The Q-learning algorithm uses an expression that updates
the Q value of the current state-action pair (s, a) using all
the experienced next state-action pair (s′, a′) using a time-
discount parameter 0 < γ < 1 to discount the Q value at
(s′, a′) and the next reward. The Q-learning mechanism has
an advantage of simplicity, but has three major disadvantages:
(1) The time discount parameter γ causes the system to favor
immediate rewards to more remote future rewards which is
not always desirable (e.g., working hard every day for a long-
term career goal). (2) The representation of the Q-learning
network is symbolic, where each state s is a symbol with
pre-defined extra-body meanings. Thus, it is unable to learn
concepts beyond those handcrafted. (3) Its number of potential
states is exponential in the number of concepts that are needed
to define a state.

From Theorem 2, a DN agent needs to learn concepts,
sound, bar A press, bar B press, food, and shock. Instrumental
conditioning is a special case of planning based on the
predicted value of alternative actions. It is more convenient
for us to discuss this subject in Section VIII.

E. Language acquisition

Semantics is the study of how linguistic elements carry
meaning. Acquisition of semantics [12] includes word mean-
ing, argument structure (the linguistic structure that a word,
such as a verb, projects into the syntax by virtue of its
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meaning), tense and aspects (e.g., how an event happened and
how it unfolds through time), quantification and scope (e.g.,
every, some).

The primary challenge for acquiring word meanings is the
problem of reference — how word forms are linked to specific
concepts of the environment. Attention plays a major role in
the establishment of such a link.

As discussed in [8], suppose a DN need to learn the
following sentence: I gave you a key yesterday. We can draw
a diagram where a node denotes on word, a label indicates
the related properties, and a link from a word to another word
represents a relationship. For example “I” have the property
“subject, singular, the first person”, etc. Then each state in
DN can learn the firing of multiple Z neurons, where each
Z neuron represents an acquired concept. The relationship is
also a concept, represented as a neuron in Z as explained
in [8], except that a relationship needs the co-firing of the
corresponding multiple concepts (e.g., I gave you, where
“gave” is a relationship with “I” and “you” the associated
object concepts). From the knowledge diagrams developed
autonomously by DN, as discussed in [8], we can see that
DN is of general purpose in terms of language acquisition.

VIII. AUTONOMOUS PLANNING

Among many more complex tasks enabled by DN, we
address autonomous planning as an example.

Theorem 3: A DN allows internal reasoning to realize au-
tonomous planning.

Proof: Autonomous planning requires first an accumula-
tion of experiences so that alternative condition-action pairs
are learned. Let us use a notation: the pair (l, p) denotes a
pair of the last context l = (q, σ) and the predicted context
p = (q′, σ′) learned by the DN.

Suppose that there are two plans according to the experi-
ences: The execution path of the plan (a) is recalled as:

(l1, pa,1), (la,2, pa,2), ..., (la,i, pa,i))

and that of the plan (b) is recalled as:

(l1, pb,1), (lb,2, pb,2), ..., (lb,j , pb,j)).

Both lead to a completion of the task. Both plans are recalled
sequentially using only the internal part of DN in Fig. 3.
Finally the value of pa,i is compared with that of pb,j . The
modulatory system is the value system of DN [10], [1], which
decides which value is better and so chooses the corresponding
plan (a) or (b). The association of a to the predicted action in
pa,1 and b with that in pb,1 is DN learned prediction. At the
end of the plan (a), the selected plan in pa,i, as part of the
last context in l, predicts the first action in pa,1. The similar
process takes place for plan (b).

Zhang & Weng [19], [20] has successfully enabled the agent
to recall the context-action sequence as discussed in the proof,
through a process called scaffolding: Artificially arranged
setting to enable quick learning via real-time online human-
agent interactions. However, the theoretical result here for
autonomous planning has yet to be demonstrated in the future

studies. I expect that non-trivial demonstration of autonomous
planning is possible only within a relatively mature DN.

IX. CONCLUSIONS

A DN network has a potential to learn and perform any
practical logic as observed in the eyes of human observer, but
it requires the facilitation of a well designed teaching sequence
for scaffolding. Internally, the developmental mechanisms of
DN are not based on any logic. Any such a logic is limited.

We have passed “neural networks are scruffy” in that they
are not logical, as Minsky put [7]. A DN is meant to scale up,
as its development is autonomous. Guided of the presented
theory, the future work is to expand the demonstrated DN
experimental results gradually to human level performance.
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